46.68 36.71 38.8 30.0 20.7 8.93 7.58 6.7 6.02 3.96 3 86 3.92 5.54 2.88 1.60 1.75 1.69 1.78 189 153 81.6 233 56 39.6 66 57 77.1 ## **COMMON POLAR APROTIC SOLVENTS** Dimethylsulfoxide Dimethylformamide Hexamethylphosphoric (DMSO) (DMF) Acetonitrile acid (HMPA) Acetone Dichloromethane Tetrahydrofuran Methyl acetate Ethyl acetate (THF) (MeCN) | Solvent | Structure | Dielectric
Constant | Dipole
Moment | Boiling | |--|--|--|--|--| | (between 5 and 20) r
reactions. Aprotic sol
moments can dissolve | moderately higher diele
make adequate general-p
vents with dielectric cor
e charged species such
onding in the solvent, th
m more reactive. | ourpose solver
nstants greater
as various anio | nts for a wide
than 20 and
ns used as nu | range of
large dipole
ıcleophiles. | | | | | | | | Solvent | Structure | Dielectric
Constant | Dipole
Moment | Boiling
Point (°C) | | | | |--|-----------|------------------------|------------------|-----------------------|--|--|--| | (between 5 and 20) make adequate general-purpose solvents for a wide range of reactions. Aprotic solvents with dielectric constants greater than 20 and large dipole moments can dissolve charged species such as various anions used as nucleophiles. Without hydrogen bonding in the solvent, these nucleophiles are relatively free in solution, making them more reactive. | | | | | | | | H₃C — S — CH₃ CH₃ CH₃ :N—CH₃ $H_3C - \ddot{N} - \dot{P} - \ddot{N} - CH_3$ CH₃.O. CH₃ :CI —C — CI: